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Iterative correction of streamline geometry is used as the basis of a numerical method for 
subsonic isentropic steady flow problems. Direct solution of coupled ordinary differential 
equations is applicable to the corresponding supersonic problem The method is formulated in 
three dimensions, but for illustrative purposes is applied to a two dimensional jet invoking a 
free surface condition. The method may be particularly economical where intuition or 
experience provides a good starting guess for streamline geometry. 

1. INTRODUCTION 

A large number of numerical methods are available for probiems in fluid 
dynamics; the surveys authored or edited by Molt (21, Belier [5 J, Krause [S], and 
Chung [ 1 ] are representative. We consider here a streamline method which appears 
to be very effective for at least some classes of compressible inviscid flow prvb~e~s. 

The formulation of the equations of motion in terms of streamline coordinates3 and 
associated hvdograph or characteristics applicatiorrs, are well known (eg., 
Oswatitsch [?I). Direct use of streamline coordinates for numerical purposes has also 
received attention; illustrative recent examples may be found in Jameson [4] and lshii 
131. Moreover, any method in which a stream function or a potential function is 
obtained can be thought of as a technique for determining streamlines, at Least 
inlp~icitly. 

We consider here a different approach, in which the goal is an explicit 
mination of the streamline geometry. For computational convenience, this geometry 
is described in terms of the intersection coordinates of streamlines with planes 
perpendicufar to a fixed direction (the x-axis). The equation of continuity is directly 
integrable, and its use in the momentum equations leads to expressions fvr the 
curvatures of the streamlines. For supersonic flow, the streamlines are obtainer as 
solutions of a set of coupled ordinary differential equations, with initial vdues 
corresponding to upstream conditions. For subsonic flow, the problem is of bo~~d~~~ 
value type (elliptic), and an iteration process is used to repeatedly correct guessed 
locations. The method represents a generalization of a suggestion made by Pearson 
[S] for incompressible flow. 
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The equations for compressible, steady, isentropic flow in three dimensions are 
given in Section 2. However, a two dimensional problem is chosen for illustrative 
application of the method, in order that stability, accuracy and speed of convergence 
can be economically investigated. This problem is of some interest in itself, since it 
deals with a subsonic jet, with one free and one constrained surface, so that the 
boundary conditions are of mixed type. Even with a deliberately bad initial guess for 
the streamline configuration, convergence with 340 mesh points was fast (20 set of 
CDC 7600 time) and accuracy was very satisfactory. A number of supersonic 
problems (see Section 4) have also been satisfactorily run, and the streamline method 
appears to have advantages over such conventional methods as the method of charac- 
teristics. Transonic problems, or problems involving shocks (or viscous shear effects) 
have not yet been considered. 

A recent practical problem, to which the present streamline method has been 
successfully applied, is sufficiently unusual to warrant brief mention. A jet of lithium 
is bombarded with a beam of deuterons, so as to produce neutrons to be used in 
nuclear reactor materials testing. The stability of the jet is enhanced by the use of a 
one-sided curved constraint (much as in Fig. 3), which induces an artificial gravity 
field. The problem is to compute the temperature and velocity fields inside the jet, 
taking account of density changes resulting from the heating (apart from this effect, 
the fluid is considered incompressible). The method used was to combine the present 
streamline technique with a second iterative process, in which the temperature field is 
determined from the velocity field and the absorption parameters. Although viscous 
stresses were not included, the entrance velocity profile was chosen so as to model 
boundary layer effects. As in the compressible flow problem, the method converged 
rapidly and appeared to give accurate results. 

Any iterative technique depends, for its rapidity of convergence, both on the 
computational algorithm and on the closeness of the initial guess to the final solution. 
In this latter respect, there are situations in which the present method may be 
particularly effective, because of the availability of an intuitive choice for streamline 
locations. It may also be noted that in some cases the boundary conditions are 
naturally expressible in terms of streamlines (e.g., airfoil surfaces, or free streamline 
conditions in far field). 

2. FLOW EQUATIONS 

We consider compressible, isentropic, steady three dimensional flow, and to 
simplify the algebra we consider only problems in which the streamlines are nowhere 
perpendicular to the x-axis, so that x may be used as a convenient base variable. 
Referring to Fig. 1, let a typical streamline be defined by 
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FIG. 1. Streamline geometry. 

where CI, /I are parameters which vary from streamline to streamline, but which are 
fixed along any one streamline (they could, for example, denote the intersection coor- 
dinates of a streamline with the (JJ, z) plane, as in the figure). Denote the velocity 
components in the x, y, z directions by U, u, IV, respectively. Ef 4(x, y, z) is any field 
variable (such as pressure), then we define the streamline derivative of 4 by 

where a subscript denotes a partial derivative. 
Let the stagnation pressure and density of the flow be pO and pO, respectively (the 

same for all streamlines, for simplicity). Denote the stagnation speed of sound by co, 
where ci= vpO/po, y being the ratio of specific heats. Let L be a reference length. 
Then writing p =pop’, p =pop’, u = cOu’, x =Lx’, etc., and discarding the primes, 
the nondimensional equations of motion become 

@uL -t @v), + @Wfz = 0, (3) 

I 
v,u + vyv + v,w = - -pyr 

YP 

58 t/42/2-4 
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with p = py and c2 =p/p, where c is the local velocity of sound. We also rewrite Eq. 
(1) in non-dimensional form, and again drop the primes. We note that Eq. (5) implies 
a relationship between density and Mach number M: 

@=--& (-+ 1). 
We will also make use of the relations 

v = uf,, 

w = ug, 

that follow from the definitions off and g. 
Using Eq. (2), we can now write 

$ @u> = cou>, + co+L + CPU), g.x 

= -cov>, - @w>, + @4,.L + @u>, g* 

by use of Eq. (3). Using Eq. (7) to replace v and w, we obtain 

(71 

-& @u) = -cou)K>, - @U>(&>z* (8) 

Since f,, for example, is an function of (x, (Y, /I), we must use the chain rule to 
calculate (f,),: 

KJ, =L ay -ud, 

= CfYx, g!3 -fxo iL)lJ~ 

where the Jacobian J is given by 

J = f, g, -fo g,. 

Computing (g,), similarly, Eq. (8) becomes 

-$ @u> = - $ (fx, go -fxs g, - gx,fo + &,fa) 

CPU> dJ =---.-, 
J dx 

(9) 

(10) 

Integration along the streamline yields 

pu = c(a¶ PI 
-¶ J 
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where C is some function of (a, p) only. Because of the interpretation of J as an 
ratio, Eq. (IO) is physically clear. Using Eq. (7), we also have 

so that (with p = p’) Eq. becomes 

A = /g -$+ 1, 

where 

A= y-1 -.$(I tf:i-g:)* 
2 

Restricting attention for the moment to subsonic flow, suppose that a s~earn~~~e 
configuration has been guessed, so that tentative values off and g are known. Then, 
apart from the function C(a, p), all quantities occurring on the right-hand side of Eq. 
(12) will also be known throughout the flow field. The value of C (as a function of LZ 
and ) in a typical problem can be obtained by the use of Eq. (11) at one end of t 
flow field (e.g., across the exit of the jet of Section 3, taken far enough downstream 
that the pressure is ambient), and using this value for C, the value of A will be k~ow~ 
everywhere. Equation (1 I) then determines p at each point, and it is now necessary to 
investigate the extent to which p is in error. 

Before proceeding, however, the use of Eq. (11) to determine p deserves some 
comment. A plot of this equation is given in Fig. 2, and it is clear that there is an 
upper limit to values of A for which a solution can be found. For ower. values of A, 
there will be two values of p; one value corresponds to subsonic flow, and the other 
to supersonic flow. The transition point represents transonic flow. For subsonic flow, 
it is convenient to fit the curve of Fig. 2 with a simpler curve (with no inflection 
point) suitable for the early stages of the iteration; in the later stages, the exact 
equation (I 1) is used, and is solved by a Newton method. 

0.6 0.8 1.0 
P 

FIG. 2. Plot of A vs p in Eq. (11). 
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Returning now to the general process, suppose that Eq. (11) has been used to 
determine p at each point of the tentative flow field. Unless the streamline geometry is 
correct, Eqs. (4) will not be satisfied individually, although that combination of them 
which leads to the Bernoulli equation (5) will be satisfied because of the use of this 
equation to compute density via Eq. (11). It should therefore be possible to extract 
two independent conditions from Eqs. (4) which can be used to correct the supposed 
flow field as defined by the chosen values off and g. 

In the first part of Eqs. (4) use Eq. (2) to replace u, by (du/dx - uY f, - u, g,), and 
then use Eqs. (7) to obtain 

Thus 

ijx4) $ f-f) = -py-lpx 

and, from Eq. (lo), we can therefore write 

=R, (14) 

say, where 

[@a g, - P5 &Vx + @*f, -P&J &I. (15) 

Equation (15) gives the value of R, in terms of C,f, and g. (Conventional centered 
differences, using only streamline functions, can be used in Eq. (15) for the numerical 
process. This suggests that, to obtain second order accuracy, a uniform spacing in 
terms of a and p variables should be chosen for the streamlines.) 

Similarly, the second and third parts of Eqs. (4) lead to 

and 

(16) 
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By combining Eqs. (15), (16), and (17), formulas for the desire curvature quantities 

f.., and g,, are obtained: 

Suppose now that slope values f, and g, (as well as f and g, of course) are known 
at that point where each streamline enters the region of interest. Then Eqs. (18) may 
be integrated numerically so as to yield a revised streamline position, correspondin 
values of R, S, T again calculated, and Eq. (18) again applied. This kind of iterative 
process can be expected to be a sensitive one, in the sense that a slight change in 
streamline geometry can produce a large change in density. Consequently, iterative 
stabilization will be useful, and in particular it has been found that the use of a 
weighted combination of new and old streamline slopes is effective. It is 
computationally efficient to permit the weighting factor to vary during the progress of 
the iteration. 

Supersonic flow is considered in Section 4. 

3. JET PROBLEM 

The algebra of Section 2 becomes simpler for a two dimensionai problem )where 
streamlines are described by the single function y =f(x, a), and 9 is replaced by f,! 
etc.), and for reasons of economy such a problem has been chosen for purposes of 
experimentation. Mixed boundary conditions have been imposed, so as to involve 
some degree of generality. 

Consider a jet of compressible gas issuing from an orifice (at x = 0 in Fig. 3), and 
proceeding to the right. The lower surface is constrained to follow the curve shown in 
the figure (specifically, y = x2/(2 fi) for 0 < x < I, y = (K - 0.5)/,/$ for x > I); the 
upper surface is subject to ambient values of pressure, corresponding to p = 0.7, 
Suficientiy far downstream, the pressure across the jet should also be ambient, and 
we take this condition as adequately valid at x = 3. To make the problem ~e~l-~~~ed, 
we also require a specification of flow angle across the orifice (in lieu of a 
specification of upstreaam geometry, to the left of the orifice), and here we take 
f, = -0.3~ across the width 0 < y < 1 of the orifice. 

At the orifice, the streamlines are chosen to be uniformly spaced. A deliberately 
bad initial streamline geometry was chosen, in which the jet width at x = 3 was only 
about 40% of the correct width. The final streamlines (for 0 < x < Z), after 
convergence of the iterative process, are shown in Fig. 3, and it will be seen that as a 
result of the turning they are compressed towards the bottom of the region. Mach 
number contours are also sketched, and it is found that expansion of the jet is 
virtually complete in that portion of it depicted in the figure. 
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FIG. 3. Compressible jet. 

A number of incompressible and compressible jet problems of this kind have been 
analyzed, and the accuracy of the results verified by conventional numerical tests 
(such as the use of a halved mesh spacing). 

4. SUPERSONIC FLOW 

If the iterative method of Section 3 is applied to a supersonic flow problem, the 
method will not converge. This result is to be expected, because the x-direction is 
time-like, and initial rather than boundary value data are required for a hyperbolic 
problem. This suggests that in a supersonic flow problem one could start by 
specifying conditions at some initial value of x, say at x = 0, and then proceed in the 
direction of increasing x, determining the streamline geometry so as to satisfy the 
equations of Section 2. If derivatives with respect to CI and /3 are approximated by 
finite differences, the system reduces to a set of coupled ordinary differential 
equations, and conventional numerical methods are applicable. 

Several two dimensional supersonic nozzle flow problems, with prescribed wall 
locations, have been solved by this method; the results are comparable to those 
obtained by the method of characteristics. 

We remark finally that in some subsonic or supersonic flow cases the choice of the 
x-coordinate as a basic parameter is not appropriate, because of near perpendicularity 
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to the local streamline or Mach line orientation. In such cases, one would presumably 
use different x-axes orientations in different regions, or alter the formulation so as to 
use streamline distance as the;basic variable. Situations of this kind have not been 
investigated. 
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